

Differential Electrochemical Mass Spectrometrie: applications in electrocatalysis and battery research

DEMS

<u>Die Elektrochemie macht Spass</u> "electrochemistry is fun"

Helmut Baltruschat University of Bonn

Zenonas Jusys Ulm University

Objective

- Learn for what problems DEMS is helpful
- Find the appropriate MS –vacuum-system
- Find the optimal cell type
- Learn to optimize the system to your particular needs

Outline

- Historical
- The interface between electrolyte and vacuum
- The Vacuum System
- Cell Types
 - The Conventional Cell for DEMS
 - A Cell Allowing the Use of Massive Electrodes: The Thin Layer Cell
 - The Dual Thin Layer Cell for Continuous Flow Through of Electrolyte
- Calibration
- Factors Influencing the Detectability of a Species
- Examples
 - Oxidation of Small Organic Molecules
 - Characterization of Organic Adsorbates
 - Aprotic electrolytes
- special cell types
- Combination with devices (fuel cells, batteries)
- Combination of DEMS with other methods
 - EQCM
 - ESI-MS
 - FTIRS
- New developments
 - ILs in vacuum
 - ICP-MS
 - Membrane chip

History

- Bruckenstein, S., Rao, R. and J. Gadde (1971). "Use of a Porous Electrode for in Situ Mass Spectrometric Determination of Volatile Electrode Reaction Products." J. Am. Chem. Soc. 93: 793.
- Bruckenstein, S. and J. Comeau (1974). "Electrochemical mass spectrometry Part 1. - preliminary studies of propane oxidation on platinum." <u>Faraday Discuss.</u> <u>Chem. Soc.</u> 56: 285.

Gaseous Products formed at a porous gas diffusion electrode were collected in vacuum and then analysed by MS

==> signal proportional to faradaic charge

▶ DEMS

- Wolter, O. and J. Heitbaum (1984). "Differential Electrochemical Mass Spectroscopy (DEMS) - a new method for the study of electrode processes." <u>Ber.</u> <u>Bunsenges. Phys. Chem.</u> 88: 2-6.
- Wolter, O. and J. Heitbaum (1984). "The adsorption of CO on a porous Ptelectrode in sulfuric acid studied by DEMS." <u>Ber. Bunsenges. Phys. Chem.</u> 88: 6-10.
- Gaseous products were analysed continuously on line in a differentially pumped MS
- = => signal proportional to faradic current (<u>differentiated charge</u>)

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

The principle (example: "classical" cell)

interface between electrolyte (1 bar) and high vacuum(< 10⁻⁴ mbar)

requirements:

- density, to keep the vacuum below 10⁻³ mbar.
- hydrophobicity, to hold back the liquid,
- porosity, to ensure a sufficiently high sensitivity (difference to MIMS!),
- permeability, to enable a fast flow of molecules

(and to avoid time consuming diffusion resistance or memory effects inside the membrane).

fast diffusion, if the pores of the membrane are free of electrolyte.

equation for a capillary:

$$r < -\frac{2\sigma\cos\theta}{p_0} \implies r < 0.8 \ \mu m$$

σ: surface tension (72·10⁻⁵ N cm⁻¹ for water) θ: contact angle with the membrane (126°) p_0 : atmospheric pressure

ethylene glycol: θ = 93°, σ = 48·10⁻⁵ N cm⁻¹ \Rightarrow r < 0.05 µm

practically usable: water, propylene carbonate, DMSO, tetraglyme

Wolter, O.; Heitbaum, J., Differential Electrochemical Mass Spectroscopy (DEMS) - a new method for the study of Baltrusch electrode processes. Ber Bunsenges, Physikal. Chemie **1984**, 88, 2-6al ISE Meeting, 2-7.09.2018, Bologna, Italy

10 Baltruse

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometr

molecular flow in the pores: $RT \cdot J = RT \cdot \frac{dn}{dt} = \frac{d(pV)}{dt} = 0.5 \cdot 3.1 \cdot 10^4 \frac{\text{cm}}{\text{s}} \cdot \frac{r}{l} \Delta p \cdot (1cm^2) = 0.41 \frac{mbar \cdot l}{s}$

for r=0.02 μ *m*; l= 75 μ *m*; Δp = 100 mbar; porosity 50%; area A=1 cm²

vapour pressure of water: 100 mbar at 40°C 23 mbar at 20°C

with a turbopump 200L/s:

 $RT \cdot J = \frac{d(pV)}{dt} = S \cdot p = 200 \text{ L s}^{-1} \cdot 10^{-3} \text{ mbar} = 0.2 \frac{mbar \cdot L}{s}$ flow for A= 0.5 cm²

the ion current I_i is proportional to the partial pressure p_i :

 $p_i = RT \cdot \frac{J_i}{S} \qquad I_i = a \cdot pi = a \cdot RT \cdot \frac{1}{S} J_i$ $I_i = K^0 \cdot J_i$

a and K^0 contain all settings of the MS and the ionization probability of species *i* response time of the MS: sudden change of J_i $V_0 \frac{dp_i}{dt} = RT \cdot J_i - pi \cdot S$ $p_i = RT \cdot \frac{J_i}{S} \cdot (1 - e^{-t/\tau})$ $\tau = \frac{V_0}{S}$ $V_0 = 1L \implies \tau = 5 \text{ ms}$

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

The Vacuum System Simplified DEMS

Schematic representation of the DEMS system

Ianniello, R.; Schmidt, V. M., A simplified DEMS set up for electrocatalytic studies of porous PtRu alloys. *Ber. Bunsengesellschaft Physikalische Chemie* **1995**, 99, (No.1), 83-86.

The Vacuum System Commercial system (Hiden)

Dimensions in mm

15

	2 turbopumps	Rotary + turbo	Scroll + turbo
1 st pumping stage	2*10 ⁻⁴ mbar ion source	10 ⁻² mbar	0.1 1 mbar ?
2 nd pumping stage	2∗10 ⁻⁵ mbar	3∗10 ⁻⁶ mbar ion source	? ion source
Advantages:	High sensitivity Less memory effects due to adsorption at chamber walls	Cheap "standard conditions" in the ion source	
disadvantages	High stress for the filaments (low lifetime)	Condensation, multilayer adsorption (cf. vap. pr. of naphthalene 0.1 mbar)	
	Secondary electrons ==> increased ionization probability		

Cell types

vacuum e) vacuum Pore $\approx 0.02 \, \mu m$ d) Pore ≈ 0.02 μm e) vacuum Pore ≈ 0.02 μm Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

- very sensitive (RF ~10)
- no single crystals, no massive electrodes
- depletion of gaseous reactants due to evaporation
- thicker catalyst layers: heterogeneous conc. profile of volatile reactants
- part of the products might diffuse away into the bulk of the electrolyte, others react further (dependent on convection)

electrolyte

example: reduction of CHCl₃

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Specti Dissry Dülberg, p. 50 Univ, of Witten/Herdecket 1994 18

Ber. der Bunsenges. Physikal.

Chemie 1989, 93, 201 Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.20

Eichleckexperiment mit Butan. Die Ionenströme beziehen sich auf das Fragment mit $m/z = 43 (C_3 H_7^{+\bullet})$.

^h Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

calibration for adsorbates: CO_{ad} - K*

21

$$K^* = z \frac{I_i}{I_F}$$
 or $K^* = z \frac{Q_i}{Q_F}$

correlation of ox. charge and int. ion current of the MS:

Before and after the experiment the state of the electrode has to be the same.

- charge flow during adsorption

(e.g. displacement of H_{ads} , change of DL composition) (*)

- charge flow during oxidation sweep

(*) cf. the determination of the pzc by the CO charge displacement by Feliu, Clavilier at al.

cf. also: Willsau, J.; Heitbaum, J., Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS. *Electrochim. Acta* **1986,** 31, 943.

Cyclic voltammetry – adsorption

Sensitive for desorption experiments (transfer coefficient N~0.9) Unsensitive for continuous reactions

Hartung, T. and H. Baltruschat (1990). <u>Langmuir</u> 6(No.5): 953-957. *Thin layer electrodes:* A. T. Hubbard and F. C. Anson ANAL. CHEM. 36, 1964, 724 Baltruschat, Jusys Tutorial: *Differential Electrochemical Mass Spectrometry*. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Baltruschät, Jusy's Tutorial: *Differential Electrochemical Mass Spectrometry*. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

6

2

8

- 1) Rotationspumpe
- 2) Turbomolekular Pumpe
- 3) Anschluss der elektrochemischen Zelle
- 4) Anschluss Eichleck
- 5) Ionenquelle
- 6) Quadrupolstäbe
- 7) Elektronenvervielfacher

8) Direkteinlass Baltruschat, Jusys Futorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna 1 y

F

example Electrodesorption of pre-adsorbed benzene from Pt(111)

Baltruschat, Jusys Tutorial: *Differential Electrochemical Mass Spectrometry*. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Cathodic desorption of ads. ethene

flow through dual thin layer cell

- Best suited for continuous reactions
- Also suited for desorption reactions
- Defined convection and diffusion
- Detection limit: 0.1 ML \cong 0,1 nmol

BaltruZhJusys, Massong, Baltruschat, Jr Electrochem, Soc. 146 (1999) 1093 nual ISE Meeting, 2-7.09.2018, Bologna, Italy

example

reactions at boron doped diamond (BDD)

oxidation of ¹⁵NH₄OH 150mM at pH 12; scan rate 10 mV s⁻¹ flow rate 5 µl s⁻¹ 1M NaClO₄, $K^*(\mathcal{O}_2) = \frac{4I_i(\mathcal{O}_2)}{I_f}$ $I_f^*(O_2) = \frac{4I_i(O_2)}{K^*(O_2)}$ $CE(O_2) = \frac{I_f^*(O_2)}{I_f}$ $I_f^*(\text{species}) = \frac{zI_{i,\text{species}}}{K^*(O_2)S}$ S: sensitivity factor - different ionization (and fragmentation) probabilities S=1, 1.65, and 1.72 for N_2 , N_2O , and NO_2

However: *K**, *N* are dependent on flow rate!

limiting cases:

channel-electrode (diff. limitation)

 $I_{\rm F} = 1.47 \cdot z \cdot F \cdot c \cdot D^{2/3} \cdot (A/b)^{2/3} \cdot u^{1/3}$

wall-jet-electrode (diff. limitation)

 $I_{\rm F} = 0.898 \ z \cdot F \cdot c \cdot D^{2/3} \cdot v^{-5/12} \cdot a^{-1/2} \cdot A^{3/8} \cdot u^{3/4}$

very low flow rates

 $I_F = z \cdot F \cdot c \cdot u^1$ (collection efficiency f = 1)

 $I_{F} = zF \cdot a \cdot c \cdot u^{y} = g \cdot zF \cdot c \cdot D^{2/3} \cdot u^{y} \text{ with } y=1/3$ $I_{i} = K^{0} \cdot a \cdot c \cdot u^{x} = g \cdot K^{0} \cdot c \cdot D^{2/3} \cdot u^{x} \text{ with } x=1/3$ diffusion limitation:
channel electrode: x = 1/3(wall jet: x = 3/4)
slow evaporation: x = 0 u ---> 0: x = 1

Rotating disc electrode:

$$i_{\rm lim} = zF \frac{1}{1,61} \cdot D^{\frac{2}{3}} \cdot v^{-\frac{1}{6}} \cdot w^{\frac{1}{2}}$$
$$\delta_N = 1,61 D^{\frac{1}{3}} v^{\frac{1}{6}} \omega^{-\frac{1}{2}}$$

time constant: $\tau = V/u = 5 \ \mu L/(5 \ \mu L \ s^{-1})$

independent of volatility

test for diffusion limitation

Merdon, C.; Fuhrmann, J. et al.: *Electrochimica Acta* **2016**, 211, 1

	14X - 14X		
general:	limiting cases:		
incoming flow J _i = dn/dt=n	channel-electrode (diff. limitation)		
ion current $I_i = K^\circ J_i$	$I_F = 1.47 \cdot z \cdot F \cdot c \cdot D^{2/3} \cdot (A/b)^{2/3} \cdot u^{1/3}$		
electrochem. formation: J_i given by the far. current I_F :	wall-jet-electrode (diff. limitation)		
$J_i = N I_F /(z F)$	$I_F = 0.898 \text{ z} \cdot \text{F} \cdot \text{c} \cdot D^{2/3} \cdot v^{-5/12} \cdot a^{-1/2} \cdot A^{3/8} \cdot u^{3/4}$		
N : the transfer efficiency	very low flow rates		
$I_i = (K^*/z) I_F$, with $K^* = K^\circ N/F$	$I_F = z \cdot F \cdot c \cdot u^1$ (collection efficiency f = 1)		
calibration with known electrochem. reaction			
$I_F = f_1 \cdot (z F \cdot c_{ed} \cdot u)$ collection efficiency: $f(u) = \dot{n}_{react} / \dot{n}_{incom}$	$I_F = zF \cdot a \cdot c \cdot u^y = g \cdot zF \cdot c \cdot D^{2/3} \cdot u^y$ with y=1/3		
$I_i = f_2 \cdot (K^0 \cdot c_p \cdot u)$ $u = dV/dt$	$I_i = K^0 \cdot a \cdot c \cdot u^x = g \cdot K^0 \cdot c \cdot D^{2/3} \cdot u^x$ with x=1/3		
$c_p = I_F / (z F \cdot u)$	diffusion limitation:		
$I_i = f_2 K^0 I_F / (z F) = N K^0 I_F / (z F)$ if complete mixing!	channel electrode: $x = 1/3$		
The transfer efficiency N is then identical to the collection	(wall jet: $x = \frac{3}{4}$)		
elliciency of the "detection cell f ₂ and independent of the electrochemical rate.	slow evaporation: x = 0		
In general: $N \neq f_2$	u> 0: x = 1		

time constant: τ = V/u = 5 μ L/ (5 μ L s⁻¹)

independent of volatility

test for diffusion limitation

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy 3

33

characterization: flow through dual thin layer cell

10⁻³ M HQ in 0.5 M H₂SO₄; 5 mV/s; $E_1 = 0.4 - 1.1$ V, detector electrode $E_2 = 0.5$ V (const.); electrolyte flow rate: 5 µl.s⁻¹ Logarithmic diagrams of limiting current vs. flow rate

10⁻³ M hydroquinone in 0.5 M H_2SO_4 , 10⁻³ M Fe₂(SO₄)₃ in 0.5 M H_2SO_4 H₂ saturated 0.5 M H_2SO_4 5 mV/s

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

solubility and diff. coeff. of volatile speccies from flow rate dependence

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

solvent	C (mM)	Lit	$D_{x=1/3} / (*10^{-6} \text{ cm}^2 \text{s}^{-1})$	Lit
0.1 M LiOH	0.785	0.8	20.1	19
1 M LiOH	0.5	0.6	20	18.6
0.1 M KOH	1.33	1.2	24.4	20
1 M KOH	0.867	0.9	20.6	18
2.5 M KOH	0.478	0.4	17.78	15
PC	3.53	3.6	19.4	25+- 8
PC+0.1 M LiClO4	2.9	n.f.	16.2	n.f.
PC+1 M LiClO4	1.95	n.f.	9.6	n.f.
DMSO	2.07	2.1	15.04	16
DMSO+0.1 M Mg(ClO4)2	1.11	n.f.	14.05	n.f.
DMSO+0.5 M Mg(ClO4)2	0.763	n.f	10.6	n.f.
DMSO+0.1 M LiCIO4	3.2	n.f.	17.97	n.f.
DMSO+1 M LiClO4	2.4	n.f.	13.77	n.f.

Data donat, ousys rational. Direcential Electronentical mass opectroneary. 05 - Annual to Eliverting, 2-1.05.2010, Dologna, italy

The mass spectrometric compartment: different solutes

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69" Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

limiting cases:

channel-electrode (diff. limitation)

 $I_{\rm F} = 1.47 \cdot z \cdot F \cdot c \cdot D^{2/3} \cdot (A/b)^{2/3} \cdot u^{1/3}$

wall-jet-electrode (diff. limitation)

 $I_{F} = 0.898 \text{ z} \cdot \text{F} \cdot \text{c} \cdot \text{D}^{2/3} \cdot v^{-5/12} \cdot \text{a}^{-1/2} \cdot \text{A}^{3/8} \cdot \text{u}^{3/4}$

very low flow rates

 $I_F = z \cdot F \cdot c \cdot u^1$ (collection efficiency f = 1)

Rotating disc electrode:

 $i_{\rm lim} = zF \frac{1}{1,61} \cdot D^{\frac{2}{3}} \cdot v^{-\frac{1}{6}} \cdot w^{\frac{1}{2}}$ $\delta_N = 1,61 D^{\frac{1}{3}} v^{\frac{1}{6}} \omega^{-\frac{1}{2}}$

Merdon, C.; Fuhrmann, J. et al.: Electrochimica Acta 2016, 211, 1

 $I_{F} = zF \cdot a \cdot c \cdot u^{y} = g \cdot zF \cdot c \cdot D^{2/3} \cdot u^{y} \text{ with } y=1/3$ $I_{i} = K^{0} \cdot a \cdot c \cdot u^{x} = g \cdot K^{0} \cdot c \cdot D^{2/3} \cdot u^{x} \text{ with } x=1/3$ diffusion limitation: channel electrode: x = 1/3(wall jet: x = 3/4) slow evaporation: x = 0u = 0: x = 1

test for diffusion limitation

Limitation by evoporation (Henry's law):

$$J_{i} = A \cdot k_{p} \cdot p_{i}^{surf}$$

= $A \cdot k_{p} \cdot K_{H} \cdot c = S \cdot p_{i} / RT$
=> $p_{i} = RT A \cdot k_{p} \cdot K_{H} \cdot c / S$
 $I_{i} = a \cdot pi = a \cdot RT A \cdot \frac{1}{S} \cdot k_{p} \cdot KH \cdot c$

0.1.4	\mathbf{C} \mathbf{C} \mathbf{C}	$C \sim 200 1/$
Substanz	x fur $u < 0.8 \ \mu l/s$	x fur $u > 0.8 \mu l/s$
Argon		0.61
Argon DEMS II	0.94	0.65
CO ₂		0.58
CO ₂	1	
CO ₂	1.05 bis 0.83	0.55
CO ₂ DEMS II	0.96	0.66
Benzen	1	0.45
Benzen DEMS II	0.95	0.6
Ester (c=2·10 ⁻³ M)		0.48 bis 0.33
Ester ($c=1.10^{-3}M$)	1 bis 0.82	0.31
Ether		0.51
Ethanol		0.11
Methanol		0.12
Methanol	0.74 bis 0.41	0.09

I _F = z F*a*c* <mark>u</mark> ^y u = dV/c	dt		
I _i = K ₀ *a *c _p *u×			
diffusion limitation:			
channel electrode:	x = 1/3		
wall jet:	x = 3/4		
slow evaporation:	x = 0		
u> 0:	x = 1		

diffusion limitation for gases and volatile, less soluble species

general:

incoming flow $J_i = dn/dt = \dot{n}$

```
ion current I_i = K^\circ J_i
```

electrochem. formation: \mathbf{J}_{i} given by the far. current \mathbf{I}_{F} :

 $J_i = N I_F /(z F)$

N : the transfer efficiency

$$I_i = (K^*/z) I_F$$
, with $K^* = K^\circ N/F$

calibration with known electrochem. reaction

$$\begin{split} I_F &= f_1 \cdot (z \ F \cdot c_{ed} \cdot u) \quad \text{collection efficiency: } f(u) = \dot{n}_{react} / \dot{n}_{incom} \\ I_i &= f_2 \cdot (K^0 \cdot c_p \cdot u) \quad u = dV/dt \\ c_p &= I_F / (z \ F \cdot u) \\ I_i &= f_2 \ K^0 \ I_F / (z \ F) = N \ K^0 \ I_F / (z \ F) \quad \text{if complete mixing!} \\ \text{The transfer efficiency N is then identical to the collection} \\ efficiency of the ,,detection " cell f_2 and independent of the electrochemical rate. \\ In general: N \neq f_2 \end{split}$$

If complete mixing: Calibration for $(f_2 \cdot K^0) = N \cdot K^0$ with solution c_p

time constant:

 τ = V/u = 5 μ L/ (5 μ L s⁻¹)

independent of volatility

43

Further examples and cell types

0.1M + CH₃OH 0.5M H₂SO₄. 10mV s⁻¹, 5µL

H. Wang, T. Löffler, H. Baltruschat, *J. Appl. Electrochem.* 2001, 31, 759s-1. H. Wang, C. Wingender, H. Baltruschat, M. Lobez, M. T. Reetz, *J. Electroanal*, Chem. 2001, 509, 163 June 50

example

Reaction paths for methanol oxidation

rates of single steps?

H. Wang, T. Löffler, H. Baltruschat, J. Appl. Electrochem. 2001, 31, 759.

HBWang, C. Wingender, H. Baltruschat, M. Lopez, M. T. Reetz, J. Electroanal, Chem. 2001, 509, 163 Meeting, 2-7.09.2018, Bologna, Italy

Bulk-Oxidation of MeOH

Pathways of methanol oxidation

Wang, H.; Wingender, C.; Baltruschat, H.; Lopez, M.; Reetz, M. T., *J. Electroanal. Chem.* **2001,** 509, 163. Abd-El-Latif, A. A.; Baltruschat, H., *J. Electroanal. Chem.* **2011,** 662, 204

no adsorption of adsorbates $\,$ occurs at 0,05 V $\,$

Series of experiments with different adsorption times and potentials are performed to investigate the adsorbate coverage.

methanol ox. at constant potential

MeOH adsorbate oxidation on Pt(100) and $\vartheta(t)$

18.05.2021 flow rate independence of CO₂ == > CO₂ only from CO_{adg}, 2-7.09.2018, Bologna, Italy Baltruschat, Jusys Fullohal. United that Electrochemical 2/lass Spectrome2y. 69 Artifulation Electrochemical 2/lass

בווכנו טו אנכף עכוואונץ מווע ועם טוו נווכ מעאטוףנוטוו ומנכא טו

methanol

•The rate of methanol adsorption and oxidation is dependent on the step density and Ru coverage at step sites.

Potential dependence: factor 10 per 100 mV

Dani usonat, ousys ratonal. Direcentiar Licensenennear mass opearementy. os i AnnuarioE meeting, z=r.os.zete, ibologna, Italy

Pt(331): MeOH current transients and adsorption rate

Pt(331) in 0.5 M H₂SO₄ solution + (A) 0.1 M and (B) 0.01 M methangl after the step of the potential from 0.05 V to 0.5 V, 0.6 V, 0.7 V and 0.8 V. (C) Oxidation of methanol adsorbate formed from 0.1 M methanol with scan rate: 10 mVs⁻¹ and electrolyte flow rate: 2 μ Ls⁻¹.

Mostafa, E.; Abd-El-Latif, A. A.; Baltruschat, H., ChemPhysChem 2014, 15, 2029

• The rate of methanol adsorption increases with step density and Ru coverage.

• Potential dependence: factor 10 per 100 mV => rds: \equiv C-H $\rightarrow \equiv$ C. +H⁺+ e⁻

Baltruschat, Jusys Tutorial: Different Mostafa et al., In preparation. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Quantitative DEMS analysis of MOR product yields on Pt/C catalyst

Z. Jusys et al., Langmuir 19 (2003) 6759

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Eelevated temperature / pressure DEMS: fuel cell relevant conditions

Simultaneous MOR and ORR, flow cell: partial current deconvolution

DEMS flow cell: electroless copper deposition

"Classical" DEMS cell: hypophospite oxidation on Ni in D₂O at 80 °C

Expected: at the OCP: H/D = 1 (H_2 : $HD:D_2 = 1:2:1$)

Z. Jusys *et al.*, Ber. Bunsenges. Phys. Chem. 101 (1997) 1865

Calibration Constant: Kº

Calibration Constant: K*

 K^{*} depends on the mass spectrometer and the cell set-up, i.e. its transfer efficiency N

$$K^* = \frac{K^o \cdot N}{F}$$

 K* can conveniently be determined using a reaction of known stoichiometry, e.g. ORR the in DMSO/TBACIO₄:

 $O_2 + e^- \rightarrow O_2^-$

 K^{*} is then be calculated from the ratio of the ionic current I_i to the Faradaic current I_F

$$K^* = z \cdot \left| \frac{I_i}{I_F} \right|$$

 For this case : I_F = -20 µA I₃₂ = -94 pA z = 1
K* = 4.7x10⁻⁶

Novel membrane inlet DEMS cell: "classical" design, aprotic electrolytes

Swagelok housing

WAGELOK

to

MS

Novel membrane inlet DEMS cell: high voltage LMNO cathode

Working electrode: $Li_{(1+x)}Mn_{1.5}Ni_{0.5}O_4$ (Co-free) Electrolyte: LP30 (1M LiPF6, 1:1 EC:DMC) Membrane: non-porous FEP (50 µm)

- Real cyclic voltammetry (not dQ/dt)
- Really differential (membrane inlet)
- > Major gases: H_2 , CO, CO₂, O_2
- > Safety issues: $H_2 + O_2 =$

Z. Jusys, Symp 20, 9:45, 7th Sep

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Li-air cell: principle

Advantage: at cathode no host for Li-ions needed (only C- electrode or catalyst)

Problems:

- unknown reactions in org. solvents
- 4 phases within O_2 gas diffusion electrode:

electrolyte, catalyst, gasphase (air), Li₂O₂ (insol, not conducting)

- uptake of $\rm H_2O$ and $\rm CO_2$ from air

Girishkumar; McCloskey; Luntz; Swanson; Wilcke; JPC Lett. 2010, 1, 2193

Oxygen Reduction at Gold

Aprotic systems

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE меетинд, 2-7.09.2018, воюдна, каку

Aprotic systems

ORR from 0.5M LiClO₄ in DMSO at Au

Black curves yield: Number of electrons transferred per reduced molecule of oxygen

Difference of ionic current yields lonic current due to reaction at WE2...

Design of the thin layer cell

- Thin layer DEMS-cell with in-situ O₂ saturation of the WE-compartment.
- Electrolyte volume in WE-compartment: 5 μL.
- Electrode area to electrolyte volume ratio comparable to batteries.
- Confined volume to investigate the influence of redox mediators.
- There is no flux of electrolyte through the cell during the experiments.

Bawol, P. P.; Reinsberg, P.; et al., PCCP 2018, 20, 21447

Aprotic systems

ORR and OER at Au in thin layer cell

 0.5 M LiClO_4 with 10 mM TTF

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

Aprotic systems Insights into the stability of TTF towards the OER

ORR and OER at Au in thin layer cell

 0.5 M LiClO_4 with 10 mM TTF

$O_2 + TTF$

- An additional Peak in OER region (CVs and MSCV of mass 32)
- → Activity of the RM towards Li₂O₂ oxidation.
- After the OER has finished the CV follows the CV of the TTF-redox couple
- Additional CO₂ evolution!
- → Carbon source is in that case TTF, because for the supporting electrolyte there is no CO₂ evolution in this region.

Cell types

Ballestrochemical Reduction of CO2- Analytical Chemistry 2015, 87, (15), 8013-8020 Meeting, 2-7.09.2018, Bologna, Italy

86

Cell types

pinhole inlet

- Fig. 1. New on-line mass spectrometer system: MS, mass detector and spectrometer; DP, diffusion pump; TMP, turbomolecular pump; C, counter-electrode; W, working electrode; V, valve; G, gas pipe. The inset shows the gas-inlet system.
- pinhole: d= few um Teflon membrane advantage: hanging meniscus small amount of substance

Gao, Y.; Tsuji, H.; Hattori, H.; Kita, H., New on-line mass spectrometer system designed for platinum single crystal electrode and electroreduction of acetylene. *Journal of Electroanalytical Chemistry* **1994**, 372, 195 - 200,

Fig.1. Cyclic voltammogram (a) and corresponding Mass current of N_2 (b) at Pt(100) in 0.2M Na₃PO₄ + 2 mM NO₂⁻. Sweep rate, 2 mVs⁻¹.

Gao, Y. Z.; Kita, H.; Hattori, H., DEMS STUDY OF NO2-REDUCTION ON PT(100) ELECTRODE IN ALKALINE-SOLUTION. *Chemistry Letters* **1994**, (11), 2093-2096
pinhole inlet ("OLEMS")

Baltruschat, Jusys Tutorial: Differential Electrochemical M

Fig. 3. Blank voltammetry of a Pt(111) electrode in 0.5 M H_2SO_4 , 50 mV/s, with the on-line electrochemical MS tip retracted and with the tip in close proximity (10–20 μ m) to the electrode.

CO stripping voltammogram and associated mass signal for CO₂ for a Pt(111) electrode at 2 mV s⁻¹.

Wonders; Housmans; Rosca; Koper, On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration. *J. Appl. Melectrochem.* **2006.** 36. (11). 1215 Meeting, 2-7.09.2018, Bologna, Italy

pinhole inlet ("OLEMS")

Wonders; Housmans; Rosca; Koper, On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration. *J. Appl. Electrochem.* **2006,** 36, (11), 1215

Fig. 2. Photographs of (a) electrochemical cell with the tip configuration and connection to the MS. (b) and (c) Tip – bead-type electrode configuration, (d) tip-electrode in hanging meniscus, (e) view of the tip-electrode configuration on the video screen. Baltruschat, Jusys Tutorial: *Differential Electrochemical Mass Spectrometry*. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

flow-through cell for bead electrodes

(A)Sketch for bead crystal flow through cell (Kel F). (1) cone-shaped glass capillary, (2) electrolyte outlet capillaries, (3) Teflon spacer, (4) hydrophobic porous Teflon membrane, (5) stainless steel frit, (6) stainless steel connection to MS. (B) Photographs of a typical DEMS cell for bead crystals. (A coloured electrolyte was used for better visibility).

Advantage:

- bead single crystals (2-3 mm).
- Hanging meniscus configration.
- Defined convection.

Abd-El-Latif, A. A.; Xu, J.; Bogolowski, N.; Königshoven, P.; Baltruschat, H., New Cell for DEMS Applicable to Different Electrode Sizes. *Electrocatalysis* **2012**, 3, (1), 9.

flow-through cell for bead electrodes

A

Fig.6. Simultaneously recorded cyclic voltammogram (CV) (a) and MSCV for m/z = 44 (b) during the electrooxidation of bulk methanol on smooth Pt(100), Pt(15,1,1) and Pt(711) in 0.1 M MeOH + 0.1 M H₂SO₄; v = 10 mV/s.

E / V vs. RHE

0,6

0,3

-i Pt(711)

-44

Abd-El-Latif, A. A.; Xu, J.; Bogolowski, N.; Königshoven, P.; Baltruschat, H., New Cell for DEMS Applicable to Different Electrode Sizes. *Electrocatalysis* **2012,** 3, (1), 9

line) and in standard H-type cell(dotted line). Bakruschal, Jusys Lutonal. Differential Electrochemical Mass Spectrometry. 69th Annual ISE Meeting, 2-7.09.2018, Bologna, Italy

The rotating inlet system

Rotating inlet system and electrochemical cell; MS = mass spectrometer, FT = rotating feed through, VB = V-belt drive, SC = sliding contact, EI = electrolyte inlet, FH = in- and outlet for thermostat, RE = reference electrode, WE = working electrode (front view below, contact wire dotted), CE = counter electrode, G = gas inlet, F = metal frit, EO = electrolyte outlet

Fig. 5 Diffusion limiting current for H_2 evolution on the sputtered Ptelectrode (above) and simultaneously measured mass intensity curves of H_2 (below); electrolyte: 10^{-3} m HClO₄ + 0.1 m NaClO₄; sweep rate 7 mVs⁻¹; rotation speeds in Hz as indicated

Tegtmeyer, D.; Heindrichs, A.; Heitbaum, J., Electrochemical on line mass spectrometry on a rotating electrode inlet system. *Berichte der Bunsengesellschaft für Physikalische Chemie* **1989**, 93, 201-206.

The rotating inlet system

Fig. 6 $I_{\rm F}$ vs. $I_{\rm i}$ diagram for curves shown in Fig. 5; N is determined from slope with $K_{\rm H}^0$ = 4.9 · 10⁻³ As/mol

Fig. 7 $I_{\rm F}$ vs. $I_{\rm i}$ diagram for H₂-evolution on the lacquer electrode; N is determined from the slopes with $K_{\rm H_2}^0 = 5.5 \cdot 10^{-3}$ As/mol

Fig. 10 Concentration profiles inside a pore in case of desorption of an adsorbate at two different times $t_1 \ll t_2$

 Table 1

 Collection efficiencies for CO₂ formation out of adsorbed CO on the sputtered and the lacquer Pt-electrode at different rotation speeds

Rotation speed (Hz)	0	4	10	16	25	30
N (sputtered electrode)	0.92	0.89	0.88	0.89	0.9	0.88
N (lacquer electrode)	0.62	0.52	0.54	0.51	0.54	0.52

Tegtmeyer, D.; Heindrichs, A.; Heitbaum, J., Electrochemical on line mass spectrometry on a rotating electrode inlet system. *Berichte der Bunsengesellschaft für Physikalische Chemie* **1989**, 93, 201-206.

Membrane ring / Au disk: Wall-jet DEMS

Combination with devices

(batteries and fuel cells)

(2) Nichols, J. E.; McCloskey, B. D. J. Phys. Chem. C 2016, 121, 85-96.

S. Wasmus, J.-T. Wang, and R. F. Savinell, J. Electrochem. Soc., Vol. 142, 1995, 382597

Current density (a) and mass signals (b-d) vs. potential during a potentiodynamic experiment using a prototype DMFC. 1 mV/s. 175~ Electrolyte: PBI membrane doped with 500 m/o H3PO4. Anode: platinumruthenium, 4 mg/cm2, feed rate adjusted by vacuum system of the MS (2 to 3 liquid ml/h). Cathode: platinum black, 4 mg/cm₂, 10 ml/min air. Solid curves; pure methanol feed. Dashed curves; water/methanol mole ratio: 2.

S. Wasmus, J.-T. Wang, and R. F. Savinell, J. Electrochem. Soc., Vol. 142,1995, 3825

98

Liquid inlet OLEMS: in operando monitoring of direct ethanol fuel cells

Combination of DEMS with other methods

DEMS dual thin layer flow cell: EQCM combined with DEMS

(a)

PtRu

- > In single measurement: Faradaic, mass spectrometric currents and frequency change Frequency (mass) change:
 - COad desorption (oxidation)
 - MeOx formation
 - anion adsorption/ desorption

1.0

- Circular photo-electrode fabricated over FTO coated glass
- > The glass slice pressed against the tightener (electrode down)
- > The outlet from the photo flow cell connected to memrabe inlet unit
- > The photo electrode illuminated via quartz window by Hg(Xe) lamp
- > Water filter used between the lamp and the cell to absorb the heat

UHV-STM prepared/ characterized electrodes: DEMS flow cell

- > UHV preparation / characterization
- DEMS under controlled mass transport
- Back-transfer to UHV / characterization

Online detection of both gaseous and non-volatile products

Decouple syringe pump, potentiostat and DEMS from ESI-MS (-5 kV) via isolation transformer

W. Zhao et al., Anal. Chem. 84 (2012) 5479

Combined DEMS/ESI-MS: potential-step methanol oxidation

significant time delay between DEMS and ESI-MS signals

W. Zhao et al., Anal. Chem. 84 (2012) 5479

Both volatile an non-volatile methanol oxidation products quantified
 Combined DEMS/ESI-MS can be used for other complex reactions

Combined DEMS / ATR-FTIRS setup

DEMS / ATR-FTRS: CO, oxalic acid, and formic acid oxidation on Au

hindered formic acid oxidation 0.9 < E < 1.3 V > common bioxalate band Z. Jusys et al., JEAC 800 (2017) 60

DEMS / ATR-FTRS: CO_{ad} stripping on shape-selected Pt nanocrystals

> well ordered facets with low index orientation

- > Au film as a conductive and IR enhancing support
- \succ Quantitative CO₂ formation measurements
- \succ Sulfate re-adsorption from I_F and I_{MS} difference
- Abnormal Stark effect:
 - stronger CO_{ad} binding at lower covearge
 - CO_{ad} compression due to sulfate adsorption

S. Brimaud et al., Beilstein J. Nanotechnol. 5 (2014) 735

Two interconnected thin layer compartments (EC/ATR-FTIRS & online mass spectrometry)

DEMS / ATR-FTIRS: ORR at Au film electrode in BMP-TFSI

x2 different mass transport limited currents at similar O₂ consumption

ORR slectivity change from 1 to 2e⁻

> At high potentials anions dominates

New anions are formed in the ORR

Scanning DEMS

Ion currents for hydrogen (I_{H2} ,m/z = 2) and CO₂ (I_{CO2} ,m/z = 44) as a function of spatial position for a capillary separation of approximately 100 um and a raster rate of 25 um s-1.

For methanol oxidation, the substrate was held at a constant potential of 0.5 V $\sim vs$. RHE! for 15 min before imaging with the SDEMS tip. Both measurements were performed in a solution containing 1 M CH₃OH and 0.5 M H₂SO₄.

Jambunathan, K.; Hillier, A. C., Measuring electrocatalytic activity on a local scale with scanning differential electrochemical mass spectrometry. *J. Electrochemical Soc.* **2003**, 150, (6), E312-E320.

Scanning DEMS

0.6

0.8

50

-O- 0.55 V - D- 0.75 V

Jambunathan, K.; Jayaraman, S.; Hillier, A. C., A Multielectrode **Electrochemical and Scanning Differential Electrochemical Mass** Spectrometry Study of Methanol Oxidation on Electrodeposited PtxRuy. Langmuir 2004, 20, 1856-1863.

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass Spectrometry.

Figure 2. (A) Steady-state cyclic voltammetry of Pt_xRu_y electrodes in a 1.0 M CH₃OH and 0.5 M H₂SO₄ solution at 25 °C. Scan rate is 0.01 V s⁻¹. (B) Plot of current from (A) versus ruthenium composition at substrate potentials of 0.55 and 0.75 V.

Scanning Capillary Electrospray Ionization Mass Spectrometry

A.D. Modestov et al., Anal. Chem. 73 (2001) 4229

dimethyl-p-phenylenediamine oxidation

Detection of non-volatile products

Scanning flow cell (SFC): ICP-MS \rightarrow OLEMS

Direct-UHV DEMS: electrochemical decomposition of ionic liquids

Trimarco, D. B.; Pedersen, T.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K., Fast and sensitive method for detecting volatile species in liquids. *Review of Scientific Instruments* **2015**, 86, (7).

Trimarco, D. B.; Scott, S. B.; Thilsted, A. H.; Pan, J. Y.; Pedersen, T.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K., Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. *Electrochimica Acta* **2018**, 268, 520

Baltruschat, Jusys Tutorial: Differential Electrochemical Mass 5

- DEMS is a versatile, sensitive, (semi-)quantitative method for the detection of volatile products
- Various kinds of cells for different applications
- Detection of adsorbates, intermediates, products
- Elucidation of reaction mechanisms
- > DEMS is a vital technique which is still developing
- It's versatility allows for various purpose-oriented combinations
- Further method development is based on the enthusiasm and creativity